C(x)=2x^2-200x+18,000

Simple and best practice solution for C(x)=2x^2-200x+18,000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for C(x)=2x^2-200x+18,000 equation:



(C)=2C^2-200C+18.000
We move all terms to the left:
(C)-(2C^2-200C+18.000)=0
We get rid of parentheses
-2C^2+C+200C-18.000=0
We add all the numbers together, and all the variables
-2C^2+201C-18=0
a = -2; b = 201; c = -18;
Δ = b2-4ac
Δ = 2012-4·(-2)·(-18)
Δ = 40257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40257}=\sqrt{81*497}=\sqrt{81}*\sqrt{497}=9\sqrt{497}$
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(201)-9\sqrt{497}}{2*-2}=\frac{-201-9\sqrt{497}}{-4} $
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(201)+9\sqrt{497}}{2*-2}=\frac{-201+9\sqrt{497}}{-4} $

See similar equations:

| -7(x-19)=-112 | | b+25-4b=-10+4b+5 | | 15y-4=116 | | 1x-8/3x=-10 | | z/9+7=−28 | | 4(a+7)/2=-6 | | 9x-2=92 | | h²+7h+12=0 | | k/6+7=20 | | 14-x(-3)=-33 | | 3(2x-7)+7=-44 | | -x+5+3x=4-5x | | 14-x(3)=-33 | | m/0.9=12 | | (x+12)x7=91 | | 12+2m=8m | | 11n-9=27 | | 14x^2=3x-2=0 | | -1=6k+23 | | 2(x-1)+5x=5 | | (x+12)•7=91 | | x+(x^2+1)^1/2=2x+(4x^2-1)^1/2 | | x+(x^2+1)=2x+(4x^2-1) | | C(x)=50.00-0.08x | | 3x-5(x-4)=-2+5x-27 | | 7x=9=9x-19 | | -2(-18x-28)=11(8+x) | | 5-2x=30-6x | | 5x^2-3x+10=-20+5x | | 6x+2=-52-81 | | 4+14=5x-74 | | 5(y-6)=2(6+y) |

Equations solver categories